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This article analyses the consumer’s durable good replacement decision using hazard
models. In contrast to the typical limited dependent variable model often used in
durable good demand studies, hazard models allow for much richer relationships
between the ages of durable goods and the probabilities of their replacement. To
illustrate the technique, a recursive system consisting of a regression equation and
a hazard model is used to examine home heating system replacement decisions by
residential customers of a major southeastern US electric utility. The results indicate
that overall system replacement rates decline over time, and that the probability of
replacement for specific households depends negatively on the age of the head of
household and the availability of natural gas, and positively on system age and higher

than expected household energy use.

I. INTRODUCTION

Statistical analysis of the demand for durable goods is
complicated by several factors. First, by virtue of their
extended effective lifetimes, the acquisition and replacement
of durable goods involves an element of timing which does
not arise in typical demand studies. As durable goods age,
the consumer is faced with the issue of deciding when (and
if) to replace them, and such actions are often undertaken
prior to irreparable failure. Hence, the timing of the replace-
ment decision is critical. Second, because of their longevity,
the typical consumer replaces products such as central space
heating systems, refrigerators and automobiles infrequently,
leading to some data-driven difficulties in analysing durable
goods purchases with many conventional statistical tech-
niques. Finally, since the demand for many durables is, like
the demand for energy, a derived demand, numerous factors
which play an important role in durable good purchase
behaviour, such as consumer tastes for ‘comfort’, are im-
possible to observe directly.

This paper demonstrates an approach for the empirical
study of durable replacement activity that addresses all
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three of the complicating factors mentioned above. This
approach, which is based on the estimation of hazard (dura-
tion) models for durable goods replacement, offers a differ-
ent and theoretically accommodating way to analyse dur-
able good replacement decisions without reliance on logit,
probit or other inherently static specifications. The proced-
ure is illustrated by analysing the replacement of home
heating systems among customers of a large US electric
utility. The estimated results are useful in several ways.
First, information is obtained on the importance of appli-
ance age, energy use characteristics and other factors in the
durable good replacement decision. Second, the results pro-
vide a means to estimate replacement rates over a wide
range of time periods. Further, while the application focuses
on home heating systems, the technique could be applied to
many energy consuming durable goods.

II. PREVIOUS RESEARCH

Economists have long noted the value of distinguishing
between the demand for a stock of durable goods, the
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purchase of a durable good, and demand for the services
provided by durables.! Depending on the goal of the estima-
tion, one or another of these features comes to the fore. As
the primary interest of the present study is the decision to
replace durable goods, the discussion will focus primarily on
the purchase decision itself, and how this has been modelled
previously.?

Because consumers typically buy only one unit at a time
of most durable goods, analyses of consumer purchase deci-
sions on the individual level have usually utilized some type
of limited dependent variable (LDV) statistical technique,
typically probit or logit models.® The consumer’s purchase
decision is assumed to depend on various factors that eco-
nomic theory suggests might influence the consumer’s
choice. Using the three part distinction mentioned above,
these factors might include relevant prices, consumers’ in-
comes, consumer taste variables and, in the case of derived
demand, factors influencing the value of the services which
the durable good will give the consumer.

The consumer’s choice to replace an existing unit may
also be influenced by the potential energy savings obtain-
able with a replacement. Since repairing and maintaining an
older unit is often a plausible alternative to acquiring a new
unit, the age of the unit to be replaced is obviously relevant.
Although appliance age can be included in a typical LDV-
type model, such a formulation is inherently restrictive.
Since LDV models are useful only to predict replacements
in the ‘next’ time period, they are of limited usefulness as
models of complex dynamic processes.

IIl. HAZARD MODEL ESTIMATION OF
DURABLE GOODS REPLACEMENT

Hazard models are dynamic, non-linear statistical models
which can be used to estimate the effects of observable
characteristics on the length of time until a discrete event
occurs. While many early hazard estimations focused on
medical, biological or engineering problems, the first use of
a hazard model in economic analysis was by Lancaster
(1979), who studied unemployment duration. Amemiya

See e.g. Philips (1987).
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(1985), Kiefer (1988) and Lancaster (1990) provide compre-
hensive surveys of this approach.

Formally, a hazard model assumes that the length of time,
t, until an event occurs is a random variable with density
f(t) and cumulative distribution F(t). Two auxiliary func-
tions are derived from the density: the survivor function,
1 — F(t), which shows the probability that the event has not
occurred by some particular time, and the hazard rate. The
hazard rate, h(t), is the likelihood that an event occurs at
a particular time given that it has not occurred previously:
h(t)=f()/[1 - F(r)].

In practice, the hazard rate is specified initially and the
density and survivor function are derived from it. The haz-
ard rate may be hypothesized to depend on observable
exogenous variables and on time itself. The dependence of
the hazard rate on time implies that, as time passes and the
event does not occur, the probability that the event occurs
changes. The flexibility with which hazard models handle
the impact of time on probability constitutes a major ad-
vantage over typical LDV formulations.

Here we hypothesize a hazard function of the following
form:

h(t, x}=exp(yt) * exp(B’x) (M

where x is a vector of exogeneous variables, t is time, and
y and P are parameters to be estimated. The sign of y will
indicate whether the probability of replacement increases or
decreases over time.*

The expression for the hazard given in Equation 1 allows
the derivation of the conditional distribution of time to
failure, f(t, x), by the relation: h(t, x)=f(t,x)/[1—F(t, x)].
We note that

Sf(t, x)=h(t, x)*[1 = F(t, x)] (2)
and that
1= F(t, x)=exp{— | h(u, x) du} 3)

The likelihood function is composed of two types of
terms, the first type corresponding to those observations for

2 Acqusition patterns for durable goods have been examined by Kasulis et al. (1979) and by Dickson et al. (1983). Consumer durable
replacement decisions and the timing of replacement have been studied by Bayus (1991). Bayus and Carlstrom (1990) have analysed ways
in which consumer durables can be grouped in order to better model customer preferences and purchase decisions.

3 With multiple purchases, static approaches include the use of Poisson regression techniques (see Paull, 1978). The use of discrete choice
models was pioneered by Farrell (1954). Other pioneering papers include Cramer (1962), Wu (1965) and Cragg (1971). This disaggregated
approach is to be distinguished from aggregate analyses of durable good purchases, such as the approach of Chow (1960). Deaton and
Muellbauer (1988) offer an extensive overview of theory and practice in this area.

41t is possible to assume that the hazard rate is a non-monotonic function of time, for example

h(t,x)=exp(y,t+7,t*)xexp(P'x)

This specification was also estimated, but the results were not significantly different from those reported here. These results are available
from the authors upon request.
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which the hazard was observed to occur (‘completed spells’),
and the second representing consumers observed not to
have experienced the hazard. By simple substitution, the
likelihood function written in terms of the hazard rate is

N1 i
L= [T h(t;, x;) » cxp{—fh(u,-, x;) d“i} *

=1

N2
l—[ exp {_J.h(ui! X;) d“.} @)
i=1

where N, and N, are the number of complete and incom-
plete spells, respectively.

Having broadly outlined the estimation strategy, some
modifications of this approach are considered which are
made necessary both by the economic nature of consumer
behaviour and by some special features of the data set.

The application involves space heating system replace-
ment by a randomly selected sample of households buying
electricity from Alabama Power Company, a large regional
US utility. These households provided extensive informa-
tion on energy usage and household characteristics as part
of Alabama Power Company’s 1990 Residential Customer
Survey Program. In addition, the households’ energy usage
and billing records were made available to us in connection
with this survey.

All customers in our sample had some form of home
heating system during the survey period. Hence, all con-
sumer purchases of heating systems during the sample per-
iod represented replacements. In addition to replacements
due to irreparable failures of existing systems, it seems
plausible that such replacements arose from two broad
motives: reliability and performance advantages repres-
ented by new units and potentially great energy savings
from modernization. This second motive makes obvious
a conceptual issue suggested by the derived nature of heat-
ing system demand: the value to a household of replacing an
older unit depends on individual tastes for energy and the
services (e.g. warmth or comfort) energy provides. House-
holds which have strong preferences for appliance services
would value improvements in efficiency more highly, and
would therefore be more likely to replace an older unit with
a new one.

The logic outlined above suggests how households’ ‘un-
observable’ tastes for energy services could be incorporated
into the estimation. Since a households’ energy usage de-
pends on both their tastes for energy services and their stock
of energy consuming durables, and since all sample house-
holds face identical electricity tariffs, similar geographic
circumstances, and highly similar appliance prices, observed
household energy usage rates, when adjusted for household
appliance stocks, offer an attractive way to quantify differ-
ences in tastes for appliance services and, by implication, the
values households place on improved efficiency.
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To include a demand intensity measure into our estima-
tion, the following approach is taken. Each consumer’s
average monthly usage of electricity (over an end-of-sample,
one-year period) is modelled as a linear function of the
household’s stock of energy using durables and exogenous
factors, Z

U=0Z+e (5)

where U is average usage in kwh/month, 0 is a vector of
parameters to be estimated, and e is a normal disturbance
which is interpreted as representing idiosyncratic tastes. Let
U be the predicted value for U and let e=U—U be the
estimated residual. Then the intensity variable, v, is defined
as

v=(U—-U)/U=¢/U

Thus, v provides a measure of the percentage deviation in
customer usage unexplained by house size, the stock of
durables owned and other observable factors. Computed for
each consumer individually, these demand intensity
measures can be used as explanatory variables, thereby
controlling for unobservable individual tastes.

Additionally, the nature of our data set requires a modifi-
cation to account for the large differential in the quantity of
information on appliance ages between customers who have
replaced their heating systems and those who have not. In
particular, for those who did not replace their systems in the
3 years prior to the survey date, information was obtained
on the age of their current system, but none on the age of
their previous system which, for some individuals, had been
replaced. For those who did replace their heating system in
those 3 years, the age of the replaced heating system was
noted. Since the sample of ages of systems at replacement
represents a random sample of the ages of all heaters at
replacement, the likelihood function was modified by
weighting observations for those who replaced their systems
by the inverse probability of replacement, and then nor-
malizing all weights to sum to one.’

IV. MODEL ESTIMATION AND RESULTS

Our sample was taken from the Alabama Power Company
(1990), Residential Customer Survey and Alabama Power
Company billing records. Only those individuals who own
their homes, and for whom the home was the primary
residence, are included in the hazard model estimation (534
out of the original 702 observations).

To estimate v, the demand intensity variable, average
kwh/month are regressed on a set of variables designed to
capture a variety of household characteristics. These vari-
ables are defined in Table 1, which presents the estimation
results for the demand intensity regression. These results are

5 The probabulity of replacement within the past 3 years is 11%, so these observations have an unnormalized weight of about 9.
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Table 1. Household electrical energy use (average kwh/month) regression results

Variable Coeflicient t-value
Constant 256.16 0.77
Water heater age (years) —647 —1.35
Space heater age (years) 7.83* 2.11
Number of electric heat pumps 20.41 0.23
Number of electric central systems 142.63* 1.82
Number of electric window AC units 2248 042
Number of gas central systems —177.19 —-0.25
Average age electric heat pumps (years) 41.85* 797
Average age electric central system (years) 395 0.59
Average age electric window units (years) 0.59 0.12
Average age gas central system (years) —8.48 —-0.22
House square footage (1000s) 0.07 1.64
Single family home dummy —278.17* —-230
Duplex dummy 282.56 1.15
Tri- or quadruplex dummy 34990 143
5-9 family home dummy —237.07 —0.81
10+ family home dummy —192.23 —0.85
Urban/rural dummy (=1 if urban) —11.60 -0.19
Number living in home 100.86* 4.79
Resident owns home dummy 62.35 0.62
Natural gas water heater dummy —278.82 —-0.90
Electric water heater dummy 92.87 0.30
Bottled gas water heater dummy —280.49 —0.86
Number of type 1 appliances 163.47* 5.44
Number of type 2 applicances 33.27* 2.85

J. E. Raymond et al.

N =702 observations
R¥=0.3168
F=13.098

*Indicates significance at the 5% level. The omitted housing type is mobile homes. Type
1 appliances are dishwashers, clothes washers and dryers. Type 2 appliances are televisions,
stereos, refrigerators and VCRs. The dependent variable is average kwh usage per month over

a 1-year period immediately prior to the survey.

relatively intuitive and straightforward. It is noted that
square footage and the numbers and ages of appliances
typically have the expected effects on usage: big houses with
older appliances use more energy. Additional significant
effects are represented by heating system ages, multiple
heating systems, the number of residents in the household,
the housing type and the numbers of various appliances
owned.

In the specification of the hazard function, the exogenous
variables in addition to a constant term are the demand
intensity variable v, the age of the head of the household,
household income, a dummy variable indicating that the
customer lives in an urban area, square footage of the home,
a dummy variable indicating that natural gas service is
available and a dummy variable indicating that the cus-
tomer has a poor credit rating.®

Table 2 presents the results of the hazard model estima-

tion using the exponential specification with linear time-
dependence as outlined in Section II1. While these estimates
are used later in some illustrative calculations, it is wor-
thwhile to examine these results in some detail.

It is first noted that, unsurprisingly, the passage of time is
highly significant in explaining replacement behaviour: the
older the system, the greater the probability that it will be
replaced. Further, the larger the value of the demand inten-
sity variable, the more likely is home heating system
replacement, a result consistent with the theoretical predic-
tion. Two other factors are statistically significant indicators
of replacement: the age of the head of the household, and the
availability of natural gas service. The older the head of the
household, the less likely he or she is to replace the heating
system. Natural gas availability is also associated with a sig-
nificantly lower probability of obtaining a new heating
system, a result that may stem from possible differentials

% Households not reporting system replacement in the previous 3 years were treated as incomplete spells. Most of the variables included in
the hazard function are largely self-explanatory. While the energy intensity variable has been described above, the poor credit rating
dummy variable was taken directly from the utility company's rating system. All customers face the same electricity price schedule and,
living in the same region, presumably face similar appliance prices except for urban/rural differentials.
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Table 2. Hazard model coefficients
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Variable Coefficient t-value
Constant —0.29* -1.77
v: unexplained energy usage (per 10 percentage points) 0.14* 1.89
Age of head of household (per 10 years) —0.13** —4.41
Income (per $10000) —-0.02 —-0.76
Urban/rural dummy (=1 if urban) —0.16 —1.46
House square footage (per 1000) —0.01 —1.51
Natural gas availability dummy —0.34** -3.31
Poor credit rating dummy —-0.22 —1.47
Time (years) 0.28** 7.26

N =534 observations

Note: Positive (negative) coefficients imply decreases (increases) in replacement time. t-values

are asymptotic.
* Indicates significance at the 10% level.
** Indicates significance at the 1% level.

Table 3. Marginal impacts on the probability of replacing the primary home heating system

Time period (years)

Variable 1-3 4-6 7-9 1-20
v (change is 10 percentage points) 0.001 0.001 0.001 0.004
(1.88) (1.87) (1.88) (1.88)

Age of head of household (change is 10 years) —0.009 —0.008 —0.007 —0.041
(—3.81) (—3.82) (—3.83) (—3.84)

Income (change is $10000 in 1990 dollars) —0.002 —0.001 —0.001 —0.007
(—0.74) (—-0.75) (—0.75) (—0.75)

Urban —0.011 —0.010 —-0.008 —0.050
(—1.38) (—1.39) (—1.39) (—139

Square feet (change is 1000 sq. ft) -0.001 —0.001 —0.001 —0.004
(—0.15) (—0.15) (—0.15) (—0.15)

Natural gas available —0.024 —0.020 —-0.017 —0.104
(—3.65) (—3.65) (—3.65) (—3.65)

Poor credit rating -0.016 —0.013 —0.011 —0.069
(—141) (—1.41) (—1.41) (—1.41)

Overall probability of replacement 0.073 0.068 0.063 0.402
(12.33) (13.18) (14.19) (14.95)

t-values are in parentheses. Marginal impacts are evaluated at sample mean values.

in the effective lifetimes of gas versus electric powered
systems.”

The advantage of hazard estimation over LDV proced-
ures can be illustrated by making the following simple
calculations. First, consider the marginal impacts of the
regression variables on the probabilities of system replace-
ment, calculated as the change in probability of replacement
(over a specified future interval) per unit change in the
explanatory factor. Table 3 presents these results for various
time intervals. For example, a 10 year increase in the age of
the head of the household reduces the probability of re-
placement within 20 years by a little over 4%, a highly

significant effect. Other significant effects include demand
intensity, with higher intensity increasing replacement prob-
abilities, and natural gas availability, which reduces the
likelihood of replacement by about 10% within 20 years.

Table 4 offers a similar analysis focused on the expected
lifetimes of home heating systems, and how these estimated
times until replacement are affected by changes in
exogenous variables. Overall, the mean time to system re-
placement is 25 years.

However, high energy usage intensity reduces the ex-
pected lifetime, with a 10% increase in unexplained usage
shortening time to replacement by almost 2 years. Similar

7 Replacement systems may be either gas or electric powered. However, those without gas service would always replace an electric powered

system.
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Table 4. Marginal impacts on the expected time to replacement of
the primary home heating system (years)

Variable

v (change is 10 percentage points) —1.99
Age of head of household (change is 10 years) 1.86
Income (change is $10000 in 1990 dollars) 0.31
Urban 2.30
Square feet (change is 1000) 0.18
Natural gas available 4.78
Poor credit rating 3.15
Overall time to replacement (years) 25.24

Marginal impacts are evaluated at sample mean values.

intuitively appealing effects are noted for the other explana-
tory variables.

V. SUMMARY AND CONCLUSIONS

This paper introduces the statistical technique of hazard
model estimation to the study of durable goods replacement
behaviour. The results obtained in the hazard model estima-
tion are intuitively plausible and of statistical significance.
While older systems are significantly more likely to be
replaced, older heads of household are significantly less
likely to obtain new systems. The availability of natural gas
service also significantly reduces the probability of replace-
ment. Further, those households with electricity consump-
tion in excess of predicted levels are significantly more likely
to replace their systems even when the age and type of their
current system(s) is taken into account. This result conforms
to the expectations of economic theory regarding durable
goods replacement, and is important in explaining replace-
ment behaviour.

While data limitations required us to limit our analysis to
home heating systems, the methodology and techniques
developed here are potentially applicable to a wide variety
of durable good acquisition and replacement issues. While
virtually all individuals in our sample had some form of
home heating system, so that any purchase of a new system
was a ‘replacement’, the initial (non-replacement) acquisi-
tion of other, ‘non-saturated’ appliances could also be
studied with the hazard methodology. In this way, satura-
tion issues, which are often of interest to energy analysts,
can be directly evaluated with the hazard model approach.
Hazard models also allow the researcher to overcome the
inherently static approach of limited dependent variable
modelling techniques. Our results show that the overall
probability of replacement and the marginal impact of cha-
nges in the independent variables on the probability of
replacement change over time. These findings would have
been unobservable with traditional limited dependent vari-
able techniques. Thus, it is concluded that the hazard model
approach outlined and applied in this paper provides a use-
ful and complementary alternative to the techniques tradi-

J. E. Raymond et al.

tionally used to model consumer behaviour in replacing
durable goods.
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