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Abstract—This paper presents a technique of cost function
estimation, based on the theory of finite mixture distributions,
which allows for the simultaneous existence of multiple tech-
nologies of production when the researcher does not know
which observations correspond to which technologies. The
finite mixture technique provides estimates of the proportions
of firms using the various technologies, facilitates comparisons
between technologies, and preserves the traditional interpre-
tations of cost estimation. After describing the mixture proce-
dure, the technique is illustrated on a large sample of savings
and loan associations, and it is concluded that this industry
exhibits multiple technologies of production.

I. Introduction

INCE the pioneering work on flexible func-

tional forms of Diewert (1973), Christensen,
Jorgenson, and Lau (1971), Fire and Jansson
(1975), and others, the estimation of multiproduct
cost functions has become one of the primary
tools of applied economics. Usually, firm-level
observations on costs and outputs for a particular
industry are pooled as a cross-section, and the
resulting regression equations are interpreted as
approximations to some true, underlying cost
function shared by all firms in the sample. Be-
cause many flexible form cost functions allow
evaluation of the direction and extent of scale
and scope economies, the results of cost estima-
tions play prominent roles in discussions of indus-
trial, antitrust, and regulatory policy.

The widespread use of cost estimation has led
to considerable debate about its merits. Issues
raised include the “approximating power” of the
translog and other flexible forms, the relation-
ships and inconsistencies between econometric
and engineering cost functions, and the role of
technical efficiency in cost analysis.! Although this
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"The flexibility of the translog is evaluated by Gallant
(1981). The relationships between engineering and economet-
ric production functions are discussed by Marsden, Pingry,
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debate has been wide-ranging, most analyses of
these issues are based on the same fundamental
assumption: all (sample) firms use the same tech-
nology, and hence face the same (long-run) cost
function. Any deviation between a particular
firm’s costs and those implied by the common
cost relationship is attributed to random factors
or inefficiency, yet the cost function that defines
average or frontier efficient performance is as-
sumed to apply to all firms.

There are reasons to believe, however, that all
firms in a given industry may not share a common
technology, particularly when innovations or reg-
ulatory changes occur. As Reingamun notes, “an
important empirical observation regarding the
adoption of innovations is that adoption is typi-
cally delayed and that firms do not adopt an
innovation simultaneously.”? In his pioneering
study of the diffusion of important innovations
within industries, Mansfield found that “... the
diffusion of a new technique is generally a rather
slow process,” and that some innovations had not
been adopted by all firms in several industries he
studied even a decade after their introductions.’
While economic analyses of the diffusion of inno-
vations have historically focused on capital-
embodied technology, it is almost certainly incor-
rect to assume that all important innovations
reside in machinery: sophisticated managerial
practices like “just in time” inventory control and
strategic management planning both influence
costs and are unlikely to be simultaneously
adopted by everyone. Finally, regulation and po-
litical pressure can substantially influence the
technological choices of firms: examples include
the certification of nuclear power plants and
product-line restrictions imposed on financial in-
stitutions. There are thus a number of reasons
why the assumption that all firms share a com-

and Whinston (1974) and Berndt and Wood (1979). The role
of technical efficiency is discussed by Fare, Grosskopf, and
Lovell (1985), Fire (1988), and Forsund and Jansen (1977).

2 Reingamun (1989), p. 383.

3 Mansfield (1968a), p. 136.
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mon technology may be incorrect for many indus-
tries.

The simultaneous existence of multiple tech-
nologies of production can pose a serious prob-
lem for traditional cost function estimation. If a
sample includes observations on firms using dif-
ferent technologies, pooling the data in a single
regression procedure is likely to produce mislead-
ing results. Since the single-technology restriction
is a specification error in these cases, the esti-
mated cost function obtained may not be quanti-
tatively (e.g., in coefficient magnitudes), nor qual-
itatively (e.g., in the implied presence or absence
of scale effects) similar to any of the true, under-
lying cost relationships.* If the researcher knew
which observations corresponded to which tech-
nologies, then this problem could be avoided by
estimating several cost functions. Unfortunately,
this kind of information is usually not available.
When “technology” is broadly interpreted to in-
clude “know-how,” it is not clear that the neces-
sary information could ever be obtained. Without
such information, however, traditional cost func-
tion estimation may be unreliable.

This paper presents a technique, based on the
statistical theory of finite mixture distributions,
which allows the estimation of cost functions
based on different technologies when the re-
searcher does not know which observations corre-
spond to which technologies. The mixture tech-
nique estimates the proportions of firms using the
technologies, allows limited testing for the num-
ber of technologies concurrently in use, and facil-
itates quantitative and qualitative comparisons
between technologies.

In order to illustrate the mixture technique, we
estimate both translog and flexible fixed cost
quadratic cost functions for a large sample of
solvent savings and loan companies in the United
States, using both the traditional pooled and mix-
ture techniques. We find both substantial support
for the claim that this industry is characterized by
multiple technologies of production, and evi-
dence that traditional, pooled estimation can pro-
duce misleading results.

The paper is divided into six sections. Section
II outlines some theory of mixture distributions

4 Pooled estimation may be subject to substantial bias since
the literature on firm adoption of innovations identifies such
things as firm size as important. See David (1969) for a
discussion of the diffusion of new technologies.
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and relates this theory to cost estimation. Section
111 describes the data set and cost function speci-
fications selected to illustrate the methodology.
Section IV presents and discusses the estimation
results, while section V examines the relationship
between the mixture methodology and frontier
estimation procedures. A conclusion which sum-
marizes the results and suggests extensions com-
pletes the paper.

Il. Finite Mixture Theory and
Cost Estimation

The theory of finite mixture distributions is a
venerable branch of statistics: early work includes
that of Newcomb (1886) and Pearson (1894). The
primary uses of finite mixture models are in ro-
bust estimation and in circumstances in which
sampling occurs from a population composed of
several subpopulations, although the specific sub-
population from which any given observation is
drawn is unobserved.> While finite mixture mod-
els are often seen in botany, biology, geology, and
zoology, their use in analyzing economic prob-
lems has been limited. Economic applications,
which often stress the relationship between mix-
ture techniques and switching regressions, in-
clude wage regressions (Quandt and Ramsey
(1978)), housing sales (Quandt (1972)), and num-
bers of purchases (Paull (1978)).

The marginal density function for a variable
with a finite mixture distribution is a convex com-
bination of marginal density functions. Formally,
if a random variable € on the real line R has a
marginal distribution A(e) given by

k
h(e) = L A fi(e)

1=1

ey

where
A >0,V
K
YA =1
Jj=1
f(e)y>0, j=1,2,...,K

and

[_MQde=L j=12,..,K

5 A discussion of various uses of mixture models and a
catalog of published research is in Titterington, Smith, and
Makov (1985).
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then € is said to have a K-component finite
mixture distribution with mixing weights
A Ay ..., Ay and component densities
£, £,(4), ..., f(-). While the component den-
sities are usually assumed to be members of the
same parametric family, this kinship is not re-
quired.

The most commonly discussed mixture model
is that of two univariate normal distributions.
Fundamental identifiability results for this and
other more general models are available in
Yakowitz (1969), Teicher (1963), and Chandra
(1977). Extended discussions of the theory
and estimation of mixture models are given by
Titterington, Smith, and Makov (1985) and Everitt
and Hand (1981).

The application of the finite mixture methodol-
ogy to the estimation of cost functions is an
extension of traditional cost estimation. In the
usual estimation of cost relationships, costs C are
assumed to be some function of outputs Y, input
prices P, a vector of parameters 6, and a zero-
mean, normally distributed error e:

C=g(Y,P;0) +e. (2)

Estimates of @ are then obtained by least squares
or other techniques.

In estimating the normal two-component finite
mixture cost function model, two cost functions,
g(Y, P;8,) and g,(Y, P;8,), are assumed to ex-
ist. The probability that a randomly selected ob-
servation on costs C is generated by the process
C=g(Y,P;0,) + ¢, is denoted A, while the
probability costs are generated by the process
C =g),Y,P;0,) + ¢, is (1 — A), where €, and ¢,
are stochastically independent, zero-mean spheri-
cally normally distributed random variables with
variances o and 022, respectively, and the mixing
weight A satisfies 0 < A < 1. Note that, when
A = 0or A = 1, the two component mixture model
collapses to the single cost function model given
by equation (2).

The likelihood function L for the two compo-
nent normal mixture cost model is given by

L = TI[A:(C: - &Y., P;6.))

+(1 - )‘)(l’z(ci - gz(Yi’Pﬁaz))] 3

and where the subscript i identifies observations,
and ¢,(*), j = 1,2, are normal marginal density
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functions with variances o and o7, respectively.
This likelihood function can be maximized over
6,, 0,, o}, o7, and A using the E-M algorithm in
the manner suggested by Hartley (1978).%

HI. Data and Model Specification

In order to illustrate the finite mixture tech-
nique, we estimated cost functions for savings
and loan associations operating in the United
States at the end of 1988. Recent important regu-
latory changes in this industry motivated our in-
terest. One impact of deregulation was to reduce
the product line restrictions under which S & L’s
operated. Such significant changes as allowing
production of new outputs suggest the possibility
that new techniques of management and produc-
tion, i.e., a new technology, may emerge through
time, replacing forms of organizing operations
that were common prior to deregulation. Thus
the savings and loan industry may be a good
example of an industry using multiple technolo-
gies for which the finite mixture procedure would
be appropriate.

Raw data on savings and loan associations came
from the Office of Thrift Supervision’s Thrift
Financial Report (TFR) tape for December 1988.
The data were screened to eliminate institutions
reported as having zero or negative total assets or
deposits, as well as those reporting zero or nega-
tive interest or operating costs. Further, we elimi-
nated from the data set all firms that were insol-
vent on a “regulatory capital” basis in 1988, so
that all firms used in estimation were viable dur-
ing the sample period.”

The TFR tape provided data on loan volumes,
interest, and operating and non-operating costs.
Average interest and capital costs were calculated
for each firm individually using techniques com-
mon in financial firm cost function estimation

® Our experience suggests that the E-M algorithm is the best
choice for mixture estimation.

7 This screening assures that a finding of the apparent
existence of two technologies will not merely represent cost
differences between solvent and insolvent institutions. Addi-
tionally, issues of output homogeneity arise when comparing
costs of viable and insolvent S & L’s, although the relevant
issue is not whether some loans are repaid and others are not:
it is not necessarily cheaper to produce something that is
stolen than something that is sold. As a practical matter,
eliminating insolvent firms had little effect on estimation
results.

Copyright © 2001 All Rights Reserved



FINITE MIXTURE ESTIMATION

studies.® Wage data for workers in the finance,
insurance, and real estate industries by state for
1988 were obtained from the Bureau of Labor
Statistics.’

Our selection of outputs and input prices was
dictated by previous cost function studies of fi-
nancial firms. OQutputs used in our estimations
are the dollar volumes of consumer loans, com-
mercial loans, and mortgages. Inputs are deposits
and borrowed money, labor, and capital. We thus
model the savings and loan association as a fi-
nancial intermediary which takes deposits and
other inputs and creates loans. For a detailed,
recent survey of this literature, see Clark (1988).

In specifying the functional forms to be used in
estimation, we strived for two goals. First, the
cost functions specified had to exhibit sufficient
flexibility so that results from the mixture proce-
dure would not merely represent the inability of
the functional form selected to approximate the
cost surface. Second, the cost forms selected had
to be well known and applicable to cost function
estimation for financial enterprises. For these
reasons we selected both the translog and flexible
fixed cost quadratic cost functions for both tradi-
tional pooled and finite mixture estimation.

The translog specification used in our estima-
tions is given by

InC =a,+ 3a,F + 2B Y,
+3%,3,8,InY; InY,

17
+ 3 In P+ 333 n, In P In P,

+2§%mxmg+e (4)

where C is cost, Y is a vector of output quantities
with i™ element Y,, P is a vector of input prices
with i element P, and F is a vector of dummy
variables such that F,=1if Y,> 0 and F, =0
otherwise.'” The a’s, B’s, &%, 7’s, #’s, and y’s

® The price of funds was calculated by subtracting fees
charged from interest paid on funds, and dividing that amount
by the total volume of funds, a practice consistent with other
studies in this area (Clark (1988)). Capital costs were calcu-
lated using the procedure outlined in Mester (1987).

This compromise was dictated by data availability, but may
not be a problem since the costs of funds alone constitute
about three-fourths of total costs for the average S & L in the
sampie.

1% Consistent with other studies in this area, firms reporting
zero levels of some outputs are treated in translog estimation
as if they had output levels of 1¢. While this assumption may
not be innocuous, our primary purpose is to compare the
pooled and mixture results, rather than to place great empha-
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are parameters to be estimated, and € is the
error term. Linear homogeneity in input prices
requires

21=1
2m,;=0,Vi
2v,=0,Vi (5)

and we impose these conditions in estimation.
The flexible fixed cost quadratic cost function
(FFC), suggested by Baumol, Panzar, and Willig
(1982), has been applied by Friedlaender,
Winston, and Wang (1983), Mayo (1984), Cohn,
Rhine, and Santos (1989) and others using vari-
ous input price specifications. The FFC is easy to
estimate, and allows straightforward evaluation of
scale and scope economies. The FFC is given by

C= o + ElaiF‘l + E,ﬁtx

Jy
+3,7,InP + 333, nPnP
+23y,Y,InP +e (6)

where the variables are as in (4). Because of the
form of the FFC model, linear homogeneity in
input prices cannot be imposed.'

IV. Estimation and Results

Descriptive statistics and definitions for the
variables used in this study appear in table 1. As
the table makes clear, sample firms exhibit sub-
stantial variations in the sizes and scopes of their
operations. While all sample firms offered home
mortgage loans, and nearly all offered consumer
loans, only about half of sample firms offered
commercial loans during the sample period. Bor-
rowed money, which constitutes approximately
three-fourths of typical S & L costs for sample
firms, was obtained at an average cost of about
seven cents per dollar borrowed in 1988.

The FFC and translog cost models were esti-
mated using both finite mixture and traditional
techniques by maximum likelihood using the E-M
algorithm. The parameter estimates, t-scores, and
mixing weights for the pooled and finite mixture
translog models appear in table 2, while table 3

sis on the results themselves. Additionally, mixture estimation
inlclluding Box-Cox transformation parameters is problematic.

For discussions of this issue, see Friedlaender, Winston,
and Wang (1983) and Cohn, Rhine, and Santos (1989).
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TABLE 1.—DESCRIPTIVE STATISTICS FOR REGRESSION VARIABLES

Variable Standard
Name Description Mean Deviation
TOTCOST Total Interest, 7,984.5 31822.8
Compensation, and
Capital costs
COMMFIX = 1if COMMLOAN > 0, 0.51 0.50
= 0 otherwise
CONSFIX = 1if CONSLOAN > 0, 0.99 0.10
= () otherwise
MORTGAGE Net Mortgage Loans, 281,860.0 1,185,444.4
Contracts and Pass
through Securities
COMMLOAN Secured and unsecured 6,515.6 58783.5
non-mortgage commercial
loans
CONSLOAN Non-mortgage consumer 11,2244 55228.9
loans
WAGE Average hourly wage;
Finance, Insurance
and Real Estate Industry 12.19 217
PFUNDS Net interest price 7.22% 0.7%
of funds; annual
percentage basis
PCAP Physical capital costs 0.48% 0.3%

as a percentage of
total deposits; annual
basis

Note: All figures are expressed in thousands of dollars,
PCAP. Data were obtained from the Office of Thrift Supervision, Thrift Fi

except COMMFIX, CONSFIX, WAGE, PFUNDS and
ial Report, D ber 1988, and the

Bureau of Labor Statistics. The final sample contained observations from 2092 savings and loan associations.

presents equivalent information for the FFC
models.'?

Referring to table 2, we note first that, for the
translog model, the finite mixture procedure sug-
gests the presence of two technologies, of which
the first, arbitrarily denoted “Mixture 1,” is the
relevant cost relationship for approximately 80%
of sample firms.'> While formally testing for the
presence of a mixture is not straightforward, the
approximate test suggested by Wolfe (1971) can
be applied.!* Performing the necessary calcula-
tion, we obtain a corrected Chi-square value of
805.9, allowing us to reject at the 1% level of
significance the claim that the sample is charac-
terized by a single cost relationship.

12 The high ¢ scores for many coefficients are typical in
flexible form cost function estimation.

13 A number of estimations, utilizing various cost specifica-
tions and different definitions for input prices are not re-
ported here, all uniformly produced mixing weights between
75% and 86%.

“ The hypothesis A =0 or A =1 involves a parameter
value on the boundary of the parameter space, violating
necessary regularity conditions. Evidence from sinulations led
Wolfe (1971) to suggest a modified likelihood ratio test. For
details, see Wolfe (1971} or Everitt and Hand (1981).

Table 2 also illustrates the quantitative differ-
ences in underlying production technologies im-
plied by the traditional and finite mixture estima-
tions. In seven cases out of thirty, the estimated
coefficients in the pooled model fail to lie be-
tween the two corresponding estimated coeffi-
cients of the mixture model.”> Further, the
magnitudes of estimated coefficients differ sub-
stantially between models, and in five cases there
are sign differences in significant coefficients be-
tween the pooled and mixture regression rela-
tionships.

Similar quantitative differences for the FFC
model are illustrated in table 3. In this model
specification, the dominant cost relationship
(again arbitrarily denoted Mixture 1) is estimated
to be applicable to approximately 86% of sample
firms. Repeating Wolfe’s test for the presence of
a mixture, we obtain a Chi-square test statistic
value of 6566.2, again allowing strong rejection of
the hypothesis that there is a single technology of
production. Additionally, the pooled model’s co-

'S There is, however, no mathematical requirement that the
coefficients be so ordered.
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TaBLE 2.—TrANs1.0G CosT FUNCTION

PARAMETER ESTIMATES

Variable Pooled Mixture 1 Mixture 2
INTERCEPT —0.037002 —-0.04714° 0.11861°
(-2.712) (—5.967) (7.021)
COMMFIX 0.00636 0.00825 —0.07264*
0.261) (0.598) (—-2.352)
CONSFIX 0.03215 0.01218 0.05164¢
1.771) (1.085) (2.185)
MORTGAGE 0.88355¢ 0.88861% 0.86711%
(114.493) (205.090) (102.874)
COMMLOAN 0.047232 0.04001? 0.09133¢
(6.940) (11.080) (10.881)
CONSLOAN 0.04593% 0.05703? 0.02177¢
(6.312) (13.562) (2.953)
MORTGAGE? 0.047812 0.04465° 0.05397%
(9.275) (14.034) (11.278)
MORTGAGE * COMMLOAN —0.00704° —0.00486? —-0.01664*
(—3.145) (-4.594) (—6.197)
MORTGAGE * CONSLOAN —0.02140* -0.03103% -0.00357
(—-6.107) (—14.167) (—1.467)
COMMLOAN? 0.01306% 0.01036° 0.03015%
(5.573) (9.785) (9.693)
COMMLOAN * CONSLOAN —0.00265 —0.00232 -0.00315
(- 1.441) (-2.196) (~1.73)
CONSLOAN? 0.02033% 0.02857¢ 0.00089
(6.011) (13.062) (0.356)
WAGE 0.05252 0.08012° 0.01736
(1.253) (3.338) (0.458)
PFUND 0.89088° 0.82993¢ 1.01899*
(20.970) (34.484) (27.269)
PCAP 0.05659° 0.8994* -0.03625¢
(3.450) (9.420) (—2.446)
WAGE? 0.29889* 0.27192¢ -0.323012
(4.104) (7.155) (—9.454)
PFUND? 0.73858% 0.38182% 0.33319¢
(8.025) (6.347) (6.429)
PCAP? 0.10883¢ 0.05683% 0.26553%
(6.710) (6.766) (18.915)
WAGE » PFUND —0.464322 —0.29845* 0.12767%
(—6.002) (—6.439) (2.288)
WAGE * PCAP 0.16542¢ 0.02653 0.19534¢
(4.987) (1.342) (6.690)
PFUND » PCAP —-0.274262 -0.10124° ~0.364652
(—8.379) (—4.975) (—18.857)
WAGE *» MORTGAGE —0.02008 -0.01890 0.061932
(—1.019) (-1.487) (4.050)
WAGE *» COMMLOAN 0.00766 0.01041 —0.040062
(0.631) (1.537) (—4.393)
WAGE * CONSLOAN —0.041942 —0.00086 ~0.100982
(—2.547) (—0.080) (~8.227)
PFUND * MORTGAGE 0.03626 0.02027 —-0.076342
(1.871) 1.617 (—-5.257)
PFUND » COMMLOAN 0.00083 —0.00964 0.06318°
(0.067) (-1.373) 6.671)
PFUND » CONSLOAN 0.040312 0.00264 0.11649¢
(2.439) (0.246) (9.602)
PCAP x MORTGAGE -0.016182 —-0.00137 0.01440°
(-2.313) (0.350) 2.752)
PCAP + COMMLOAN —0.00850 -0.00077 -0.923172
(~-1.754) (—0.286) (—5.533)
PCAP « CONSLOAN 0.00162 —-0.00178 —0.01550°
(0.294) (-0.578) (—2.989)
A — 0.80209 0.19791
T 0.1764 0.1005 0.2365

Note All vanables m logs as appropriate. Asymptotic (-statistics in parentheses.

* Significant at the 5% level.
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TaBLE 3.—FFC QuabpRrATiCc CosT FUNCTION PARAMETER ESTIMATES

Variable Pooled Mixture 1 Mixture 2
INTERCEPT 0.000191 -0.008182 0.215602
(0.002) (-0.819) (0.079)
COMMFIX 0.007791 —0.000572 0.065105
(0.409) (-0.374) (1.985)
CONSFIX 0.007384 0.011932 —0.36045
(0.084) (1.196) (-0.013)
MORTGAGE 0.851467* 0.855646 0.779106*
(94.624) (643.822) (112.631)
COMMLOAN 0.0871772 0.0401332 0.060031°
(17.857) (59.353) (14.642)
CONSLOAN 0.037806* 0.0467952 0.540522
(6.168) (59.801) (19.277)
MORTGAGE? 0.0009512 —0.0009072 0.003186*
(—4.164) (-10.351) (-8.441)
MORTGAGE » COMMLOAN 0.0003732 —0.0016712 0.012041*
(2.658) (—48.759) (27.557)
MORTGAGE * CONSLOAN —0.0007632 —0.000176* 0.002708°
(2.651) (-2.347) 6.792)
COMMLOAN? —0.0003912 0.0003642 —0.0097942
(-3812) (18.559) (—41.367)
COMMLOAN * CONSLOAN —0.000181 0.0017142 0.005332°
(—1.666) (39.394) (31.280)
CONSLOAN? —0.000546* 0.000011 —0.0049532
(—2.206) 0.231) (—18.336)
WAGE 0.097131 0.0054162 —0.106687
(1.478) 0.930) (-0.615)
PFUND 0.094150 —0.550732 —0.315665
(0.827) (—-6.273) (-1.297)
PCAP 0.033775 0.009140° 0.1034072
(1.725) (5.367) (1.982)
WAGE? 0.024077 0.027877 —0.907685
(0.050) 0.739) (—0.761)
PFUND? 0.8101562 0.151903° —0.615216
(2.974) (7.360) (-1.189)
PCAP? 0.033684 0.006603* 0.187883*
(0.955) 217D (2.941)
WAGE » PFUND —0.153712 —-0.117038* —0.956687
(—0.278) (-2.831) (-1.038)
WAGE + PCAP 0.055608 0.018626* —0.538010%
0.524) 217 (—2.488)
PFUND » PCAP 0.3309442 0.037326* 0.650128*
(3.460) 6.118) (3.423)
WAGE + MORTGAGE —0.0735352 0.035115° —0.061797*
(-2.119) (5.788) (—3.589)
WAGE » COMMLOAN —0.014386 —0.0458422 —~0.0741952
(-0.501) (-7313) (—3.670)
WAGE *» CONSLOAN —0.036792 0.007400 0.099706°
(—1.468) (1.852) (—6.545)
PFUND * MORTGAGE 0.839108* 1.0651802 1.8023602
(17.086) (161.342) (40.027)
PFUND * COMMLOAN —0.021183 0.023356* 0.011817
(—0.583) (3.479) (0.416)
PFUND + CONSLOAN 0.3581522 —0.1514282 —0.198119?
(5.854) (—16.671) (-7.097)
PCAP + MORTGAGE —0.005941 0.008165* 0.0816072
(—0.534) (6.450) (13.458)
PCAP * COMMLOAN —-0.075776* 0.028298* —0.188324*
(-9.047) (21.182) (—42.208)
PCAP «* CONSLOAN 0.0327442 0.001501 —0.008412°
(3.991) (0.838) (-2.522)
A — 0.85543 0.14457
o 0.4033 0.0315 0.84505

Note: Asymptotic ¢-values are in parentheses.
“ Significant at the 5% level.
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TaBLE 4.—ScAaLE AND ScopeE MEasURES FOR FFC QuabraTic Cost FUNCTION

Percentage Overall Product Specific Scale Overall Product Specific Scope
of Means  Scale Mort Comm Cons Scope Mort Comm Cons
Pooled Model
50% 1.0322 1.0012 1.182 1.401 0.001 0.000 0.001 0.000
2.73) (4.29) 041) (0.09) (0.00) (0.00) (0.00) 0.00)
75% 1.022 1.001? 1.124 1.274 0.000 —0.000 0.001 -0.000
(1.60) (4.29) 0.42) (0.09) (0.00) (-0.00) (0.01) (-0.00)
100% 1.018 1.001# 1.095 1.213 0.000 -0.000 0.001 -—0.000
(1.08) (4.28) 0.43)  (0.00) (0.00) (-0.00) 0.01) (-0.00)
200% 1.011 1.0022 1.055 1.130 —-0.000 -0.001 0.001 -0.001
0.37) (4.28) 0.49) (0.11) (-0.000 (-0.02) 0.03) (-0.02)
300% 1.011 1.003* 1.045 1.113 -0.001 -0.001 0.002 -0.002
0.19) 4.27) 059 (0.14) (-0.01) (-0.04) (0.06) (—0.06)
Mixture Model 1
50% 1.0072 1.001° 0.967 1502 -0.034 -0.016 -0.017 -0.018
(5.32) (1040) (-043) (1200 (-0.82) (-0.77) (-0.82) (-0.86)
75% 1.005° 1.0012 0.975 1332 -0.023. -0010 -0.012 -0.013
(3.75)  (1040) (-051) (1200 (-082) (-0.71) (-0.82) (-091)
100% 1.004% 1.0012 0.977 1.247 -0.017 -0.007 -0.009 -0.010
(3.05) (1039) (-061 (119 (-081) (-0.63) (-0.82) (-097)
200% 1.003 1.002% 0.976 1.119 -0.008 -0.000 -0.004 -0.008
(120) (1038) (-133) (1.19) (-0.79) (-0.08) (-0.84) (-144)
300% 1.003 1.003% 0.970* 1.077 —0.005 0.003 -0.003 -0.008
0.05) (1036) (-253) (1.18) (-0.76) (0.84) (-0.86) (—-2.21)
Mixture Model 2
50% 1.5452 1.0022 3293 —-0.311 0.616 0.306 0.305 0.309
(20.51) (8.90) (1.94) (-0.01) (0.08) (0.08) (0.08) (0.08)
75% 1.362% 1.0032 2.613%  0.158 0.459 0.226 0.225 0.230
(11.45) (8.88) (2.02) (-0.01) (0.08) (0.08) (0.08) (0.08)
100% 1.270? 10047 2.295*  0.404 0.361 0.176 0.174 0.182
(7.32) (8.86) (2.14) (-0.01) 0.07) 0.07) 0.07) (0.08)
200% 1.1312 1.008? 1.9382 0.839 0.172 0.077 0.072 0.090
(2.35) (8.78) (2.92) (-0.01) (0.06) (0.06) (0.05) (0.07)
300% 1.083 1.0122 1.957* 1.059 0.085 0.028 0.020 0.049
(1.18) (8.70) “.14)  (0.00) (0.05) (0.03) 0.02) (0.05)

Note: Asymptotic f-statistics are calculated using the procedure of Mester (1987), and appear in parentheses
For scale measures, the null hypothesis 1s constant returns (a measure equal to 1), while for scope measures, the

null hypothesis 1s no scope effects (a scope measure of
? Significant at the 5% level.

efficients fail to lie between those of the mixture
model in 16 of 30 cases.

The importance of the differences in estimated
parameters exhibited in tables 2 and 3 can be
clearly illustrated by calculating scale and scope
economy measures using the various estimated
regression relationships and comparing the re-
sults. This is done for the results of the FFC
model in table 4. The cost measures are not
calculated for the translog model because of the
well-known difficulties in calculating scope
economies with this functional form (Berger,
Hanweck, and Humphrey (1987)). The scale and
scope economy measures are constructed by the
widely-used procedures of Baumol, Panzar, and

0.

Willig (1982): an overall or product-specific scale
measurement of 1 indicates constant returns, less
than 1, decreasing returns, and greater than 1,
increasing returns.'® Similarly, overall or product-
specific scope measures greater than zero indi-
cate positive scope economies, zero values sug-
gest no scope effects, and negative values imply
scope diseconomies. These measures are calcu-
lated and presented in table 4 for selected scal-
ings of the sample mean output vector.

The three technologies represented by the
pooled and mixture results exhibit important dif-

16 See Baumol, Panzar, and Willig (1982) for an extensive
exploration of these measures of economies of scope and
scale.
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ferences. While all three estimated technologies
have statistically significant overall scale
economies at low to moderate levels of outputs,
the mixture results suggest that, for 86% of sam-
ple firms, cost advantages obtainable by output
expansion are less than one-third as large as the
pooled results would suggest. Further, a minority
of firms utilize a technology that exhibits very
large (though diminishing) statistically significant
returns to scale at low to moderate output levels.
Differences in the magnitudes of product-specific
scale effects for mortgage loans at high output
levels are also evident. Additionally, the technol-
ogy of Mixture 2 exhibits significant product-
specific scale effects for commercial loans, and a
comparison of these measures for all three mod-
els suggests that the effects of pooling can be
quite misleading. Finally, while the scope mea-
sures for all three models are usually insignifi-
cant, the general appearance of the results again
suggests that the technology inferred from the
standard regression results does not resemble ei-
ther of the technologies suggested by the mixture
procedure.

The procedure by which the mixture estima-
tions sorted firms into two groups is not easily
duplicated by noting qualitative differences be-
tween firms. A number of variables available but
not used in the final results reported in this study,
including stock or mutual ownership status and
state or federal charter status of sample firms,
cannot even approximately duplicate the partition
implied by the mixture results. When firms were
sorted into one group or the other by analyzing
the normalized or absolute sizes of the prediction
errors implied by the mixture cost functions, no
obvious distinguishing firm characteristics could
be identified.

V. Finite Mixture Techniques and
Frontier Estimation

While the estimation of cost functions using
traditional techniques is widespread, recent years
have seen growing interest in both statistical cost
and production frontier estimation and related
procedures which construct graphs of technolo-
gies in a nonstochastic, linear programming
setting. This literature (e.g., Forsund and
Hjalmarsson (1974), Forsund and Jansen (1977),
Fire, Grosskopf, and Lovell (1985), Lee and Tyler

THE REVIEW OF ECONOMICS AND STATISTICS

TaBLE 5.—PrEDICTED CosTs For FFC
QuabraTic CosT FUNCTION MODEL As A PERCENTAGE
OF SAMPLE MEAN CosTs

Output Scaling

(% of Mean) Pooled Mixture 1 Mixture 2
50% 0.50317 0.47429 0.69179
75% 0.74676 0.70973 0.91576

100% 0.99013 0.94508 1.14000

200% 1.9615 1.88567 2.03967

300% 2.9296 2.82492 2.94357

Note: Sample mean costs = $7,984,000. Input prices set at sample mean
values. Output scaling refers to proportional scahing of the sample mean
output vector.

(1978), and Greene (1982)) has been at least
partially motivated by the recognition that, while
a “cost function” is by definition the solution to a
minimization exercise, traditional cost function
estimation continues to rely on stochastic speci-
fications that do not take this into account. The
interpretation of traditional cost functions esti-
mated using typical disturbance structures is thus
quite different from that attached to the results
of frontier procedures.

The finite mixture technique presented in this
paper is clearly an extension of traditional proce-
dures, and we have in fact interpreted our results
in this light. Some evidence on the relationship
between mixture and frontier techniques, how-
ever, is offered by comparing the predicted costs
obtained from a mixture and corresponding
pooled estimation. Table S utilizes estimation re-
sults for the FFC model to calculate predicted
costs, as a percentage of sample average costs, for
various scalings of the sample mean output vector
using sample average input prices. We find that
the technology represented by Mixture 1 is lower
cost than that given by both Mixture 2 and the
pooled model over a wide range of output scal-
ings. In fact, the technology implied by the Mix-
ture 1 relationship has the appearance of a mini-
mum cost “frontier” for a large range of outputs
and input prices.!” While this result seems sensi-
ble, the finite mixture procedure itself does not
impose any specific relationship between the
component cost functions, which could “cross”

'7 One can find extreme values for input prices, however, for
which Mixture 2 represents a lower cost technology, though
the results of table 5, combined with the scale results from
table 4, lead to the speculation that Mixture 2 represents an
“older” technology which is being supplanted by Mixture 1.
This conjecture, however, is beyond the scope of our analysis.
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one another repeatedly through the range of rele-
vant outputs and input prices. Additionally, un-
like frontier techniques, the mixture procedures
used in this paper organize observations “not on
the frontier” by estimating a typical cost function
from which these observations were presumably
generated. This fundamental methodological dif-
ference could be of some significance when one
of the goals of estimation is to facilitate predic-
tions on the effects of product line or other
regulations on industry costs and performance.

V1. Conclusion

This paper presented and illustrated a tech-
nique of estimation, based on the theory of finite
mixture distributions, which allows for the simul-
taneous existence of multiple technologies of pro-
duction when the researcher does not know which
observations correspond to which technologies.
The technique, which is a generalization of tradi-
tional cost analysis, produces estimates of the
proportions of firms using one or another tech-
nology, allows limited testing for the number of
technologies concurrently in use, and facilitates
comparison between technologies. The mixture
methodology was illustrated by estimating both
pooled and two component normal mixture speci-
fications using the translog and flexible fixed cost
quadratic cost models for a large sample of sav-
ings and loan associations operating in 1988. The
statistical results strongly support the contention
that this industry is characterized by multiple
technologies of production. Further, the cost
functions estimated by the traditional and mix-
ture procedures exhibited quantitative and quali-
tative differences, suggesting that traditional cost
estimation may produce misleading results in the
presence of multiple technologies of production.

A number of developments and extensions of
these results are possible. First, while we exam-
ined only two component mixture models, the
potential number of components (and, hence, un-
derlying technologies) is limited only by consider-
ations of identifiability and tractability. The
reader is warned, however, that greater numbers
of components can present enormous practical
difficulty in estimation, and that testing for the
existence of mixtures with higher numbers of
components is problematic. Second, while we
specified identical functional forms for the cost
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functions used in estimation, this restriction is
not necessary. Third, while we feel cost or pro-
duction function estimation constitutes a natural
application of the mixture methodology, the pro-
cedure is quite general and may be liable to
profitable application elsewhere. Finally, while
the mixture results presented here suggest a cer-
tain potential practical kinship between mixture
and frontier estimation, general conclusions on
this point remain an unresolved issue deserving
further investigation.
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