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Since its introduction by Aigner, Lovell, and Schmidt
(1977), stochastic frontier estimation has been widely used in
empirical work. Recent applications include the estimation
of frictional unemployment by Warren (1991), the estima-
tion of earnings functions by Polachek and Yoon (1987), the
estimation of bank efficiency by Ferrier and Lovell (1990),
the estimation of farm efficiency in Kansas by Thompson,
Langemeier, and Lee (1990), the estimation of electric-
utility efficiency by Reifschneider and Stevenson (1991), and
the estimation of the efficiency of life-insurance firms by
Yuengert (1993).

The measures of inefficiency used in these studies are
based on residuals obtained from the estimation of a frontier.
Residuals are sensitive to specification errors, particularly in
frontier models, and it is likely that this sensitivity will be
passed on to the inefficiency measures. Heteroscedasticity
is a specification error often associated with the estimation
of cost functions, and the presence of heteroscedasticity is
likely to affect these inefficiency measures. It is well known
that heteroscedasticity does not have much harmful effect
on estimators of average practice cost functions—estimators
remain unbiased but are no longer efficient. This occurs be-
cause average practice cost functions are usually estimated
by least squares, which yields a mean regression, and means
are not affected by symmetric dispersions around them. The
problem of heteroscedasticity is far more serious in frontier
models because, unlike the mean regression function, the
frontier is changed when the dispersion increases.

This article illustrates how to estimate a héteroscedas-
tic frontier cost function. We are motivated to develop a
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heteroscedastic frontier model by the results of a Monte Carlo
study by Caudill and Ford (1993) and by the results of our own
Monte Carlo study, which are available on request. Caudill
and Ford investigated the effects of heteroscedasticity in the
one-sided error on parameter estimates in a single-factor fron-
tier production function. They found that heteroscedasticity
leads to biased parameter estimates. Specifically, when the
model is estimated by maximum likelihood, heteroscedastic-
ity leads to overestimation of the intercept and underestima-
tion of the slope coefficients. (The opposite should be the case
for a cost frontier.) Our own Monte Carlo study confirmed
the findings of Caudill and Ford and went further to deter-
mine the effects of heteroscedasticity in the one-sided error
on some commonly used inefficiency measures. Not surpris-
ingly, the inefficiency measures are also affected by the het-
eroscedasticity. In our Monte Carlo study of the estimation
of a cost frontier, not accounting for the heteroscedasticity
in the estimation led to the overestimation of inefficiency for
small firms and the underestimation of inefficiency for large
firms. For these reasons we believe that the development and
estimation of a heteroscedastic frontier model is an impor-
tant task.

In this article we develop and estimate a heteroscedas-
tic frontier cost function using data from commercial banks.
Our results show dramatic changes in the parameter esti-
mates and inefficiency measures when accounting for het-
eroscedasticity in the estimation process. We find that the
rankings of firms by their inefficiency measures is affected
markedly by correcting for heteroscedasticity but not by al-
ternative assumptions about the distribution of the one-sided
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error term. Thus the changes in firm-specific inefficiency
measures in both absolute and relative terms indicate that
those concerned about the measurement of firm-specific in-
efficiency should consider testing for and, if indicated, cor-
recting for heteroscedasticity in their estimation procedures.

1. FRONTIER ESTIMATION AND
INEFFICIENCY MEASURES

Frontier techniques have been widely applied to the esti-
mation of both production and cost functions, and without
loss of generality we confine our discussion to the estima-
tion of cost frontiers. Prior to the article by Aigner et al.
(1977), primarily average practice cost functions were esti-
mated, usually by ordinary least squares (OLS). The models
were specified as

TG = X8 +w, )]

where TG, is total cost, X; is a vector of explanatory variables
including output quantities and input prices, 3 is a vector of
unknown parameters to be estimated, and w; is a two-sided
error term with E(w;) = 0, E(w,w;) = O for all i and j, i # j,
and V(w)) = o2,

Stochastic frontier estimation is based on the idea that some
firms are less efficient than others and that deviations from
the frontier are due to these inefficiencies. To represent this
inefficiency in the cost relationship, an additional one-sided
error term is added to the model in (1) so that it becomes

TC,' = X,B"‘ w; + Vi, (2)

where E(v;) > 0, E(v;v;) =0 forall i and j,i #j, and V(v,) =
o?. The assumption is also made that w and v are uncorrelated.
The two-sided error term, w, is associated with things outside
firm control, and the one-sided error term, v, is associated
with factors under control of the firm. The importance of this
distinction is made clear later.

The most common distributional assumptions made in
frontier estimation are that w; is normal and that v; is either
half-normal or exponential. First, we assume normal and
half-normal, respectively. The density function of the sum
of a normal and a half-normal was first derived by Weinstein
(1964). Letting € = w + v, the density function is

f(&)=@2/o)*(e/o)F*(Ae/d),—00 < € < +00, (3)

where 0? = 02 + 02, A = 0,/0,, and f*(-) and F*(-) are the
standard normal density and distribution functions, respec-
tively. The parameters of this model are 3, o, and )\, and the
estimation of this model by maximum likelihood is routine.

One major advantage of stochastic frontier estimation is
that it allows for the measurement of inefficiency. Aigner et
al. (1977) and Schmidt and Lovell (1979) suggested measur-
ing average inefficiency by 0,v/2/7. Alternatively, average
inefficiency could be estimated by the average of the resid-
uals, €;. The real advantage of frontier estimation, however,
is that it permits the estimation of firm-specific inefficiency.

Jondrow, Lovell, Materov, and Schmidt (1982) gave two mea-
sures of firm-specific inefficiency, both of which are based on
the conditional distribution of v; given ¢;. The first measure
is based on the conditional expected value of v given € and is
given by

E(|e)=0.l(eA/0) +(f*(eX[0)/F*(eA/o))],  (4)

where o, = (0,0, /0)* and all other expressions are as previ-
ously defined. Jondrow et al. also provided a measure of firm-
specific inefficiency based on the conditional mode, which is
given by

M(v|e)=e(a?/o?) ife>0

=0 ife <O0. 5)

Both of these measures are easy to calculate, and they have
been used extensively in production and cost studies, even
though they are not consistent.

There is a problem associated with using measures based
on residuals to make statements about firm-specific ineffi-
ciency. The problem is that residuals are particularly sensi-
tive to specification errors. This problem was mentioned in
a recent article on cost efficiency in banking by Ferrier and
Lovell (1990), who stated, “The econometric approach im-
poses parametric structure on both technology and the distri-
bution of inefficiency, and so commingles specification error
with inefficiency” (p. 243).

Heteroscedasticity is one specification error that re-
searchers can reasonably expect to encounter in the estima-
tion of stochastic frontiers, either production or cost func-
tions. In many econometrics textbooks readers are advised to
expect heteroscedasticity when the observations are of “dif-
ferent size.” This advice has its historical roots in the research
of Prais and Houthakker (1955), who found expenditures for
households with higher incomes to be more volatile than ex-
penditures for households with lower incomes. This is true
because people with higher incomes have more scope for
choice. The same should be true of firms in their produc-
tion and cost relationships. To be consistent with the tra-
ditional view that associates size-related heteroscedasticity
with greater ability to choose, we consider the possibility
that the one-sided error, v, is heteroscedastic. This one-sided
error term embodies factors “under firm control” and larger
firms have more “under their control.”

Although the presence of heteroscedasticity has little
harmful effect on the parameter estimates of average prac-
tice cost functions (estimators remain unbiased but are no
longer efficient), the effects of heteroscedasticity on param-
eter estimates in frontier models are more troublesome. The
Monte Carlo results of Caudill and Ford (1993) show that
heteroscedasticity in the one-sided error term leads to bi-
ases when frontier models are estimated. The effect of het-
eroscedasticity on firm-specific inefficiency measures is also
of considerable interest. Our own Monte Carlo results on the
estimation of a frontier cost function show that heteroscedas-
ticity in the one-sided error causes the intercept to be under-
estimated and the slope parameters to be overestimated. If
the heteroscedasticity is related to the firm size, small firms
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appear to be less efficient and large firms more efficient if the
heteroscedasticity is not considered in the estimation.

2. A HETEROSCEDASTIC FRONTIER MODEL

The estimation of heteroscedastic frontier models has
been recently addressed in the literature by Reifschneider
and Stevenson (1991) and Yuengert (1993). These authors
took very different approaches to the incorporation of het-
eroscedasticity in frontier models, and both approaches differ
from the approach taken here.

Reifschneider and Stevenson (1991) were the first to
incorporate heteroscedasticity into a frontier model in their
investigation of firm-specific inefficiency in the electric-
utility industry. They incorporated heteroscedasticity into
the composite error, €, by allowing the mean of the one-
sided error to vary. This is achieved by simply adding a
constant, which can vary from firm to firm, to the usual one-
sided error term. This flexibility permits the measurement
of firm-specific inefficiency. In their article, Reifschneider
and Stevenson anticipated the extension we have made in this
article—that is, incorporating the heteroscedasticity directly
into the variance of the one-sided error—but opted for their
method because of its relative computational ease.

Recently, Yuengert (1993) incorporated heteroscedasticity
into a frontier model using data on insurance firms. In his
model, the two-sided error is normally distributed and the
one-sided error is gamma distributed. Heteroscedasticity
is incorporated directly into expressions for both variances;
however, the variances are only allowed to assume seven
different values corresponding to different classes according
to asset size. Unlike Reifschneider and Stevenson and the
method presented here, the variances are not firm-specific
but group-specific.

To begin our discussion of the incorporation of size-related
heteroscedasticity into frontier models, some assumption
must be made as to the nature of the heteroscedasticity. Here
we assume that the one-sided error exhibits what Greene
(1990) referred to as multiplicative heteroscedasticity. Thus
o, can be written

gvi=0 exp(zi’)l)v (6)

where Z; is a vector of variables related to firm size and -y is
a vector of unknown parameters. If Z; includes an intercept,
the preceding expression can be simplified to

oy = exp(Z)- M

This functional form has several advantages over others.
Multiplicative heteroscedasticity has some computational
advantages because it automatically constrains o,; > O and its
use does not require division (which complicates numerical
optimization). In addition, the functional form in (7) is easily
constrained to yield the homoscedastic case, thus making a
likelihood ratio test possible. In any case, Kennedy (1985)
stated that Monte Carlo evidence suggests that, at least in
linear models, precise knowledge of the functional form of
the heteroscedasticity is not crucial to improving the estima-
tion. We expect that this result is at least partially true for

nonlinear models as well, and in this spirit the multiplicative
functional form is adopted here.

To allow for heteroscedasticity in the frontier estimation,
the model is parameterized in terms of 8,0,, and o,. The
standard deviation of the two-sided error term is also written
in exponential form so that o,, = exp(6). The density function
in (3) can now be written

filed) = (2/0i)f' (fi/U.)F* (/\ifi/ai),
where 02 = g2 + 0%, \; = 0,;/0,, and f* and F* are as defined
previously. Note that ); is a function of -y and that o; depends
on \;,7, and 6. The likelihood function can be written as
the product of density functions like those in (8). The log-
likelihood function is

|0g L(:Ha v 0) =X log(f:(ﬁ.)) (9)
Taking partial derivatives yields

—00 < € < +00, (8)

dlogL _ _[(ni—XiB)  Af |,
5 _z[ o X (10a)
OloglL ~ 5 _0'_3,- +fi (yi = XiP)A:
oy o} F? o
2 2 /v — X8\

o} Fr o;

i

2 2 Y. 2
x (—"—;+1> + g_;(y__ﬁ?) } (10¢)
J; g; g;

Maximization of the likelihood function is accomplished by
using the algorithm described by Berndt, Hall, Hall, and
Hausman (1974).

dlogL _x {_ﬁ + i (()’i - Xiﬂ))u)

3. AN APPLICATION

To illustrate the effects of heteroscedasticity in empirical
research, the method presented in this article is applied to an
interesting research problem. Data from the Federal Reserve
System’s Functional Cost Analysis (FCA) program were ob-
tained. This data set has been used widely in previous re-
search on the banking industry and in particular in frontier
cost function estimation by Ferrier and Lovell (1990). It con-
tains detailed information on the inputs used by participating
institutions, as well as the number and dollar volume of the
loans and deposit accounts at these institutions. A functional
allocation of some costs across the institution’s activities is
made by the reporting institution’s employees, although this
allocation is not used in this study. The advantages of using
this data for the present study are that detailed information
is provided on bank inputs and outputs and its use enables
comparison with previously published research. One disad-
vantage is that the data made available to the public has some
information masked to protect the confidentiality of the par-
ticipating institutions; for this reason the location of the firm
is not revealed, and neither is holding-company affiliation.
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Our objective in using this data set is not to reproduce Ferrier
and Lovell’s results. We use their published model and spec-
ification so that we can focus on the merits of estimating a
heteroscedastic frontier rather than discuss particular variable
definitions and model specifications.

To illustrate the problems inherent in frontier estimation
in the presence of heteroscedasticity, we use FCA data from
1984 and define the variables as listed later, following the
procedures of Ferrier and Lovell (1990). Five outputs are
used, including the number of demand deposit accounts ( y,),
the number of time deposit accounts ( y,), the rumber of real-
estate loans (y;), the number of installment loans ( y,), and the
number of commercial loans (ys). Three input prices were
used—an average price of labor services (w,), an approximate
price of physical capital and equipment (w;), and an approx-
imate price of materials (w;). The average price of labor ser-
vices is calculated by dividing total expenditures on salaries
and fringe benefits by the total number of bank employees.
The approximation to the true price of physical capital ser-
vices is calculated by dividing occupancy costs and spending
on furniture and equipment by the dollar volume of deposits.
Similarly, the approximation to the price of materials is calcu-
lated by dividing spending on materials by the dollar volume
of deposits. These last two variables follow the procedures
outlined by Mester (1987) and used by Ferrier and Lovell
(1990); dividing by deposits is done because of the insti-
tutional age-related bias introduced if one divides physical
capital spending by the book value of total physical capital,
because physical capital is recorded at historical cost rather
than market value. There is no quantity measure of material
inputs available to convert total spending to a unit-price mea-
sure directly, so the dollar volume of total deposits is used on
the basis that this amount of spending is used to support the
reported volume of deposits. As Ferrier and Lovell noted, the
definitions of outputs anG input prices are less than perfect
but are necessary because better information is not available,
particularly on input prices. Linear homogeneity in input
prices is imposed in the estimation.

The group of variables included to control for differences
in bank costs due to factors other than input prices or output
quantities again follows the procedures of Ferrier and Lovell
(1990). Consistent with what has been termed the production
approach to investigating bank costs, the number of loans and
deposit accounts are used as a measure of bank output and
the average dollar volume (d1-d5) of each type of loan or
deposit is included to control for size-related differences in
production costs [see Clark (1988), for a discussion of this
and other approaches to measuring bank costs]. Other control
variables include an indicator for the regulatory environment
of the state where the bank is located (d6), which takes the
value 1 if the institution is located in a unit-banking state
and 0 otherwise. We also include the number of branches a
bank operates (d7) and a series of indicators for institution
type (d9-d12), which identify Federal Reserve nonmember
commercial banks, savings and loans, mutual savings banks,
and credit unions, respectively. Ferrier and Lovell (1990)
included a variable for holding-company membership (d8),

which was masked on the data tape we were able to obtain
from the Federal Reserve and is therefore not included in
our model.

Several variables are included in the vector, Z, to allow
for heteroscedasticity in the one-sided error. These variables
include the five measures of output ( y,—ys) mentioned ear-
lier, the number of demand deposit accounts, the number of
time deposit accounts, the number of real-estate loans, the
number of installment loans, and the number of commercial
loans. In addition to the number of loans and deposits, we
include the average dollar volume of each of these loans and
deposits (d1-d5). The vector, Z, also includes the dummy
(d6) indicating if the state in which the bank resides is a unit-
banking state, and the variable (d7) indicating the number of
branches a bank operates.

Our final data set differs from that used by Ferrier and
LovelFin that they reported having 575 institutions in their
data set but we have 555, 20 fewer. This discrepancy is ap-
parently due to differences in the way we screened the institu-
tions on the raw data tape, which contained 648 institutions.
Because precise independent replication of empirical work
is quite difficult, the reasonably close correspondence of our
results is encouraging, although not necessary to illustrate
the usefulness of our technique. Our data are available on
request from the JBES editorial office.

4. ESTIMATION RESULTS

Due to the large number of parameters estimated in the
cost function, the results are contained in Tables 1 and 2.
The regression coefficients are presented in Table 1, and the
variance parameters are given in Table 2. The second col-
umn of Table 1 contains the results from estimation by OLS.
Nearly all of the coefficients have the expected sign and sev-
eral are statistically significant. The R? of .992 indicates a
very good fit, which is typical in the estimation of translog
multiproduct cost functions. Column 3 of Table 1 contains
the results from estimating the usual homoscedastic frontier
model. As expected, the results are very similar to the OLS
results. The intercept of the frontier model s, unsurprisingly,
lower than that obtained by OLS. Olson, Schmidt, and Wald-
man (1980) showed that in the case of a cost function OLS
estimates of all parameters except the intercept are unbiased
and frontier estimation has the effect of lowering the inter-
cept in the estimation of a cost function. Column 4 of Table
1 contains the results of estimating a heteroscedastic fron-
tier model. The heteroscedastic frontier parameter estimates
are about evenly split between those that are larger than the
OLS orregular frontier parameter estimates and those that are
smaller. In the multiproduct case, the estimated cost function
is twisted by the heteroscedasticity. It is clear that, unlike in
the homoscedastic case, the estimates from the heteroscedas-
tic model are not simply OLS estimates with a lower intercept.

The estimates of the variance parameters are contained in
Table 2. The statistical evidence for the existence of a ho-
moscedastic frontier is weak. Our estimate for \ is .4976,
and, using the Slutsky theorem, the approximate standard
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Table 1. Regression Parameter Estimates

Table 1. (continued)

Variable OLS HOHN HTHN HOEX Variable OoLS HOHN HTHN HOEX
intercept -7.011 -7.014 -7.177 -7.039 Inw; - Inwp —.055 —.057 -.053 —.065
(.189) (.196) (241) (.184) (.036) (.043) (.041) (.041)
Iny; 287 .287 226 .285 (In wp)? 167 .168 174 176
(.024) (.026) (.029) {.025) (.039) (.051) (.048) (.049)
Inyz .539 542 .650 .548 Iny; -Inwy .018 .018 .028 .018
(.025) (.027) (.034) (.028) (.038) (.037) (.038) (.035)
Inys .046 .042 .029 .041 (Inyy - Inwp -.046 —.045 —-.033 —.044
(.015) (.019) (.021) (.019) (.038) (.036) (.036) (.036)
ny, .033 032 034 .034 Inys - Inw .055 057 018 057
(.016) (.019) (019) (.018) (.037) (.037) (.035) (.036)
Inys .066 066 051 .064 Iny, - Inwy -.002 —.004 —.003 -.003
(012) (.013) (.014) (.013) (.034) (.037) (.0386) (.035)
In wy 377 376 324 .365 Inys - Inwy —.046 —.046 —.043 —.048
(.028) (.031) (.029) (.030) .018) (019) (.020) (.019)
In W 387 389 416 .397 Inys-Inwy 015 016 013 019
(.027) (.030) (.029) (.029) (.021) (.023) {-238) (.022)
(In y3 P .068 067 .036 .062 Iny, - Inwy -.005 —.005 .005 —.003
(.024) (.023) (.024) (.023) (.025) (.027) (.028) (.027)
Iny, -Inys -.035 -.033 —.011 -.029 Inys - Inwy 038 039 039 037
(.032) (.030) (.033) (.029) (.021) (.024) (.025) (.024)
Iny,  Inys —.066 -.068 ~.052 —.066 Inys - Inwy .002 .002 -.013 —.000
(.018) (.018) (.021) (.018) (.016) (017) (017) (017)
Iny;-Iny, .015 .016 .030 .020 Inys - Inw; ~.012 -.014 -.010 -.015
(.018) (.017) (.019) (.017) (.015) (.018) (.016) (.018)
Inyy-Inys .035 .035 .025 .032 In dy 314 315 .220 307
(.015) (.013) (.015) (.013) (.015) (.014) (.018) (.013)
(In yo)? 128 A27 102 128 Ind; .435 439 591 .435
(.039) (.037) (.045) (.037) (022) (.020) (.031) (.021)
Iny, -lnys .004 .005 .003 .003 Inds 028 019 016 020
(.016) (.018) (.021) (.018) (.015) (012) (.018) (.012)
Iny, - Inyy -.067 -.069 —.069 -.073 Indy .005 .005 .011 .005
(.021) (.019) (.022) (.019) (012) (.012) (.016) (.012)
Iny, - Inys -.047 —.047 —.045 —~.044 Inds .059 .060 .025 .057
(.015) (.014) (.018) (.013) (.010) (.010) (012) {(.010)
(Inys)? 017 .016 .016 017 de -.015 —.0156 —-.044 -.015
(.008) (.010) {.010) (.010) (.013) (.014) (.020) (014)
Inys-lnys 017 018 015 019 & 002 002 .002 002
{.013) (.014) (.014) (.014) (.001) (.001) (.001) (.001)
Inys-Inys 021 021 018 021 dg 008 .006 010 007
(.008) (.009) (.009) (.009) (012) (.013) (011) (.012)
(In ys)? .020 020 .001 .019 dyp .064 .070 —.016 .062
(.013) (017) (.018) (.017) (.047) (.055) (.048) (.054)
Inys -Inys .002 .001 .005 .001 di 116 Jd21 .011 114
(.010) (.010) (.012) (.010) (.033) (.035) (.033) (.034)
(In ys)? .004 .004 .004 .005 dhz .075 .078 .000 .072
(.007) (.008) (.008) {.008) (.067) {(.129) (0.086) (.117)
(n wy )2 103 106 110 116 R? 992 — _ —
(.055) (.054) (.054) (.052) —
NOTE: Figures in parentheses are standard errors.
{continued)

error is .8803. This suggests that there is no (homoscedas-
tic) frontier. This test of significance is invalid, however,
because the value of A under the null hypothesis of no in-
efficiency (A = 0) is on the boundary of the admissible
parameter space. A valid test based on the coefficient of
skewness, b,, was given by Schmidt and Lin (1984), where
b, = (Te3/N)/(Te /N)'. This yields atest statistic of .0237,
which does not exceed the critical value of .243 for o = .01
given in Biometrika Tables for Statisticians (Vol. 1, table
34B). Alternatively, we perform a test of symmetry given
by Pagan and Hall (1983). This test is based on a statis-
tic, h, which follows the standard normal distribution, where
h = [(N*b,)/6]°. Our value of h is .2275, which is not sig-

nificant at any of the usual levels of significance. The results
of all of these tests indicate that no homoscedastic frontier is
present, but we do find compelling evidence for the existence
of a heteroscedastic frontier.

Column 4 of Table 2 gives the estimates of parameters in
the vector v, and these parameters provide information on
the presence of heteroscedasticity. Four of these coefficients
are significantly different from 0. Although this is evidence
of the presence of heteroscedasticity, as we noted earlier a
likelihood ratio test is possible. The value of the chi-squared
statistic is 98.4, which exceeds the critical value of xi, at
any of the usual levels of significance. This provides further
evidence suggesting the presence of heteroscedasticity.
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Table 2. Variance Parameter Estimates

Variable OoLS HOHN HTHN HOEX
Intercept (o) — -3.055° —4.723 3.154
(1.595) (4.211) (.243)
lny,(')q) — bt 1.100 —
— (515)
In yz(“/g) —_ -— —-1.242 —_
— (.535)
In y3(v3) — — 133 -
— (.267)
In ya(va) — — —.112 —_
— (:243)
In ys(vs) — — —.034 —
- (272)
In dy(ve) - - 1.145 —
— (.481)
Inda(y7) hant —_ —-1.392 —
— (552)
In d3(~yg) — — 029 —
‘ — (-279)
In d4(‘79) - —_— .007 -
— {.331)
In d5(")’10) - -_ 371 i
- (.278)
(1) - — 573 -
— (.452)
dr(7112) — - .007 —
_ (.037)
7] - —2.357° —2.551 2.418
(.179) {.0865) (.054)
NOTE: Figures in parentheses are standard errors.
DA

The two inefficiency measures discussed previously were
calculated for each bank in the data set. For the homoscedas-
tic frontier model (HOHN) with the half-normal error speci-
fication, the mean inefficiency was 3.76% with a standard
deviation of .84%. In the heteroscedastic frontier model
(HTHN), the mean inefficiency score rose to 5.54%, with
a standard deviation of 8.51%. In absolute terms this in-
crease in mean inefficiency is modest, but proportionately it
is nearly 50% higher. The minimum inefficiency score in
the HOHN model was 1.82%, and the maximum score was
8.03%; the minimum score in the HTHN model was lower at
.05%, and the maximum was much higher at 65.48%. Cor-
recting for heteroscedasticity has this effect because of the
twisting of the cost frontier as noted earlier. Not accounting
for heteroscedasticity leads one to overestimate inefficiency
for small firms and underestimate inefficiency for large firms.

In addition to the absolute measures obtained from the es-
timations, the relations between the firm-specific inefficiency
rankings are of interest to determine the extent to which cor-
recting for heteroscedasticity affects the determination of rel-
ative rather than absolute inefficiency. One measure of this
relation is the correlation between the two rankings of firms
by their inefficiency measures in the homoscedastic and het-
eroscedastic cases. This correlation was .2018, which was
statistically significantly different from 0 at an a-level of .01.

The firm-specific inefficiency measures and the firm rank-
ings they make possible may be as sensitive to alternative
error specifications as they are to the correction for het-
eroscedasticity. To investigate this issue, a homoscedas-

tic frontier model with an exponential one-sided error term
(HOEX) was estimated for comparison with the HOHN
model. The estimation results for the HOEX model are given
in Column 5 of Table 1. The estimation results are very sim-
ilar to the HOHN specification. The mean inefficiency score
for HOEX specification was 4.27% with a standard deviation
of 2.20%; this mean was roughly 13% higher than the HOHN
specification. The minimum score for the HOEX model was
1.48%, relatively close to the HOHN model, but the minimum
score for the HOEX model at 23.52% was about three times
that of the HOHN model. The correlation between the inef-
ficiency rankings obtained from HOHN and HOEX models
was .9987, indicating a very close correspondence between
the two rankings. Moreover, the correlation between the
HOEX rankings and the HTHN rankings, at .2233, was quite
similar to the correlation of .2018 between the HOHN and
HTHN rankings. Thus the firm-specific inefficiency rank-
ings obtained from our frontier-model estimates appear much
more sensitive to the correction for heteroscedasticity than to
these alternative specifications of the error term.

5. CONCLUSIONS

Frontier estimation has been widely used in economics
to estimate firm-specific inefficiency. Because most of the
measures of inefficiency are based on residuals, it is criti-
cally important to note that the residuals and consequently
the inefficiency measures may be distorted by specification
errors. This article discusses and develops the estimation
of a heteroscedastic frontier model by maximum likelihood.
The frontier cost model is estimated under assumptions of ho-
moscedasticity and heteroscedasticity for the one-sided error.
Both models are estimated using bank cost data. A likeli-
hood ratio test rejects the null hypothesis of homoscedastic-
ity. The estimated coefficients in the models are different,
but the most dramatic difference is found in the firm-specific
inefficiency measures from each model. When heteroscedas-
ticity is incorporated into the estimation, average inefficiency
estimates are about 50% higher at the mean. Furthermore,
the ranking of firms as to their relative inefficiency changes
dramatically when the correction for heteroscedasticity is in-
corporated into the estimation, much more than the rankings
do under different specifications for the one-sided error term
when heteroscedasticity is ignored. This is considerable ev-
idence that inefficiency measures are sensitive to specifica-
tion errors like heteroscedasticity and must be viewed with
caution unless the heteroscedasticity is incorporated into the
estimation.

[Received September 1993. Revised May 1994.]
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